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X1. On the Foundations of the Theory of Algebraic Functions of One Variable.

By J. C. Fierps, Ph.D., Associate Professor of Mathematics in the University
of Toronto.

Communscated by A. R. Forsyru, Sec.D., LL.D., F.R.S.

Received June 4,—Read June 6, 1912.

§ 1. SoME years ago the writer published a book* in which he developed a new theory
of the algebraic functions of a complex variable. The theory in question was purely
algebraic in its character and perfectly general. The higher singularities gave rise to
no specific difficulties due to their greater complexity and no exceptional cases had
to be reserved for separate treatment. The capital result of the theory might be said
to be the “ Complementary Theorem “—a theorem which is considerably more general
than the Riemann-Roch Theorem.

The book, however, presents its difficulties for the reader, and, in particular, the
sixth chapter would seem to have been a stumbling-block. For this chapter the
writer has already given several comparatively simple substitutes, and the reader of
the present paper will find that, among other results, those of the chapter in question
follow in very easy fashion from the representation of a rational function in the
form (8). The method of the “deformation of a product,” which plays a conspicuous
part in the earlier chapters of the book, is here dispensed with. The residues of what
we call the principal coefficient of the reduced form of a rational function will be
found to play an important rdle—a rdle which is already implied in the argument of
the book and which is brought into evidence in a paper by the writer published in
Vol. XXXII. of the ‘American Journal of Mathematics’ under the title “The
Complementary Theorem.” In the present paper the apparatus for handling the
residues in question will be greatly simplified. We have no need of the function
R (2,v) defined in Chapter IX. of the book, and at the same time we are able to
dispense with the functions {%(z,v) and the more or less complicated formulee
connected with these functions in the earlier presentation of the theory.

Let .
Fluw)=vw+fo w4+ fo=0 . . . . . . . (1)
* (Theory of the Algebraic Functions of a Complex Variable,’ MAYER and MULLER, Berlin, 1906.
VOL. CCOXII.—A. 494, 2 X 2 Published separately, January 29, 1913.
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340 DR. J. C. FIELDS ON THE FOUNDATIONS OF THE

be an equation in which we shall ultimately suppose the coefficients f,_,, ..., f; to be
rational functions of z. For the moment, however, it will suffice to assume that these
coefficients have the character of rational functions for the value z = @ (or z = ),
that is, that they are developable in series of integral powers of z—a (or 1/z) in
which, at most, a finite number of terms have negative exponents. We say that a
function has the character of a rational function of (2, ) for the value z=a (or z = »)
if it is built up by rational operations out of % and functions of z which have the
character of rational functions for the value z=a (or z=oo). Here it is to be
understood that the function is to have a meaning for each of the branches of the
equation (1), corresponding to the value of the variable z in question~—otherwise said,
that the rational operations do not involve division by a factor of f(z,u). The
equation (1) may or may not be reducible in the domain of functions of rational
character for the value z = a (or 2 = ). In any case, however, without detriment to
the generality of our theory, we may assume that the equation does not involve a
repeated factor.

Any function possessing the character of a rational function of (z,u) for the value
z=a (or z =) can evidently be written in one, and only one, way in the form

H(z,u) = byt byt 2+ ccthy . o . . . . . (2)

where the coeflicients 5, possess the character of rational functions for the value of
the variable z in question. This form we call the reduced form of the function. The
coefficient of %*~! in the reduced form of a function of (z,u) we call the principal
coefficient of the function. The term A, ju"~! itself we call the principal term. In
what follows we shall take for granted that a function of (z,u) is expressed in its
reduced form where nothing in the context implies the contrary.

Corresponding to the value z=a (or z=o) we have a representation of the
equation (1) in the form

Flow) = =P (w=P) .. w=P) =0, . . . . . . (3)

where P, ..., P, are series in powers of z—a (or 1fz) with exponents, integral or
fractional, of which, it may be, a finite number are negative. These power-series
group themselves into a number, 7, of cycles of orders v, ..., v, respectively where the
series of a cycle of order v, proceed according to ascending integral powers of the
element (z—a)'™, or 27", as the case may be. As a general rule we have », = 1.

We shall speak of the order of coincidence of a function H (z,4) with a branch
u—P, = 0, or of the order of coincidence of the branch with the function, meaning
thereby the lowest exponent in H (z, P,) arranged according to ascending powers of
z—a (or 1/z). The order of coincidence of the branch »—P, = 0 with the product

Q,(z,u) = (u=P) ... (u—=P,_)) (u=P,,,) ... (u=P,) . . . . (4)

we shall indicate by the symbol . This is plainly also the order of coincidence of
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THEORY OF ALGEBRAIC FUNCTIONS OF ONE VARIABLE. 341

the branch with the function f(2,4). The order of coincidence of the branch
u—P, =0 with the factor u—P, we shall briefly refer to also as the order of
coincidence of the branch u—P, = 0 with the branch »—P, = 0, and we shall indicate
this order of coincidence by the symbol u,,. It is evident that u,, = w,,. Further-
more, i, is equal to the sum of the orders of coincidence of the branch 4 —P, = 0 with
its n—1 conjugate branches, and we therefore have

s = Ms,1+"'+lu's,s—l+lus,s+l+'°'+lus,n' L (5)

It is readily seen that the numbers g, corresponding to the several branches of the
same cycle are all equal. The » numbers thus defined for the branches of the # cycles
we shall indicate by the symbols ;

T N (1))

The functions Q, (2, %) in (4) are defined by the identities
Su) =w-P)Q(zu)s=1,2...n . . . . . . (7)

We can then represent any function H (z,u), of rational character for the value
z=a (or z= ), in the form*

H(z,u)=OIQI(z,u)+...+03Qs(z,u)+...+6,,,Qn(z,u) Y €3}

where 6, ..., 6, are series in powers of z—a (or 1/z) involving integral or fractional
exponents, of which a finite number only can be negative. The necessary and
sufficient condition that the function H (2, ) should be represented by the expression
on the right-hand side of (8) is

_HEPR)
93—Qs(z’Ps),s—l,Z,...,n.. Y €))

To see this it is only necessary to note that the functions

Ql (Z, u’)a sy Qs——l (Z, u), Qs+1 (25, ’LL), s Qn (Z, u)

all vanish identically on substituting in them u = P,. The representation of the
function H (z,%) in the form (8) then exists and is unique. This representation
evidently also gives the function in its reduced form since %' is the highest power
of % which presents itself.

- The order of coincidence of the branch u—P, = 0 with the function H (z,u) is
plainly the same as its order of coincidence with the element 6,Q, (z,%) in (8) and is,

* This form of representation was suggested to the writer by formula (3) in Chapter XIII. of his book on
the algebraic functions, already cited. It may be pointed out, however, that the same form was derived
by CHRISTOFFEL from LAGRANGE’S interpolation formula and employed in his paper, «Algebraischer

Beweis des Satzes von der Anzahl der linearunabhingigen Integrale erster Gattung,” ‘Annali di Mate-
matiea,” ser. IL, t. X., pp. 81-100.
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342 DR. J. C. FIELDS ON THE FOUNDATIONS OF THE

therefore, obtained on adding the lowest exponent in the series 0, to f,, the order of
coincidence of the function Q,(z,u) with the branch in question. If, then, the order
of coincidence of the function H (z, %) with the branch w—P, =0 is = g, the series
6, can 1nvolve no negative exponent. If the order of coincidence of the function
H (z,4) with the branch u—P,=0 is > ji,—1 the lowest exponent in the series
6, must be > —1. Now the coefficient of %! in the reduced form of H (z,u), as
given in (8), is

0, . . . e e e e e e (10)

a function which is evidently of rational character for the value of the variable z in
question. If, then, the orders of coincidence of the function H (z,4) with the
branches u—P, = 0, ...,u—P, = 0 are greater than the corresponding numbers in the
set i—1, ..., i,— 1, the lowest exponent in the principal coefficient is > —1 and must
therefore be = 0, because of the rational character of the coefficient for the value
z=a (orz=mo). We shall say of a function of z that it is entegral with regard to
the element z—a (or 1fz) if its expansion in powers of the element involves no
negative exponents. The principal coefficient in a function H (z,u) of rational
character for the value z = @ (or 2 = ®) is then integral with regard to the element
z—a (or 1/z) if the orders of coincidence of the function with the branches of the
corresponding cycles are greater than the numbers m—1, ..., u,—1 respectively.
Otherwise stated, the principal coefficient in a function H (z, ») of rational character
for the value z = a (or z = o) must be integral with regard to the element z—a (or
1/2) if the orders of coincidence of the function with the branches of the several
cycles do not fall short of the numbers

m—1+ }—',...,,u,,.—-l—’rl— N ¢ 5 B
i vy

respectively. A set of orders of coincidence which do not fall short of the numbers
given in (11) we call a set of adjoint orders of coincidence, and, if a function possess
such a set of orders of coincidence, we say that it is adjoint for the value of the
variable z in question. The theorem which we have just proved may then be briefly
stated as follows :—If a function H (2, %) of rational character for the value z = a (or
z =) is adjoint for this value of the variable its principal coefficient must be
integral with regard to the element z—a (or 1/z). This theorem, so far as it has
reference to the value z = o, is evidently also embodied in the statement that the
degree in (z,u) of the principal term in a function H (z,u) of rational character for
the value z = oo must be = n—1 if the function is adjoint for this value of z.

If a function I (z,u) of rational character for the value z =a (or z =) is
conditioned for this value of the variable by a certain set of adjoint orders of
coincidence 4, ..., ., and if for a single one of these orders of coincidence u/, we
have u/, = u,, the principal coefficient, already integral, will in the general function so
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conditioned have a constant term which is # 0. This we can readily see from the
form of representation for the function given in (8). If, namely, we suppose
u—P; =0, ..., u—=P, = 0 to be the v, branches of the cycle of order »,, the y, series
6y, ..., 6, in (8) will be conjugate series in which the lowest exponent is > —1, and in
each of which the constant term is the same and unconditioned by the orders of
coincidence here in question. The constant term in the principal coefficient of the

partial sum
0.Qi(zu)+...+6,Q,.(z%), . . . . . . . . (12)

on the right-hand side of (8), is then arbitrary, and this is, therefore, also the case for
the constant term in the total sum on the right-hand side of (8), since the series
0,415 -+, 0, are determined independently of the v, series 6,, ..., 6,,.

The theorem just stated, together with the theorem preceding, may be included in
the one statement:—In the general function H (z,u) of rational character for the
value z = o (or z = ) and conditioned for this value by a set of adjoint orders of
coincidence ', ..., ', the principal coefficient must be integral with regard to the
element z—a (or 1/z), and, furthermore, will involve an arbitrary constant term unless
#', ..., o, are simultaneously greater than the corresponding numbers in the set
Mys eoey Mo .

Let H (z,4) be the general function of rational character for the value z = a (or

= ), which is conditioned by a set of orders of coincidence

R P ¢ £:))

where ¢ is a positive or negative integer or 0, and where 'y, ..., «/, constitute a set of
adjoint orders of coincidence which, however, are not simultaneously greater than the
numbers u;, ..., u,. The function (z—a)™ H (z,u), or 2’H (2, u), is then evidently the
general function of rational character for the value z=a (or z =), which is
conditioned by the set of adjoint orders of coincidence /i, ..., «,, and its principal
coefficient, by the theorem last stated, must therefore be integral in the element z—a
(or 1/z) and involve an arbitrary constant. It follows that the lowest term in the
principal coefficient of the general function H (z, u), conditioned by the set of orders of
coincidence (13), is a (z—a)’, or az™%, where « is an arbitrary constant.

Evidently any set of orders of coincidence corresponding to the value z = a (or
z =) can be written in the form (13), so that we may also state the last theorem
as follows :—The lowest term in the principal coefficient of the general function
H (2, u) of rational character for the value z=a (or z =), and conditioned by a
given set of orders of coincidence for this value of z, is a (z—a), or a2z, where « is an
arbitrary constant, and where ¢ is the greatest integer whose subtraction from each
number of the set leaves a set of adjoint orders of coincidence.

From the form (8) it is readily seen that we can construct a function H (z, u) of
rational character for the value z =@ (or z =), which possesses an arbitrarily
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assigned set of orders of coincidence i, ..., 7,, for the branches of the corresponding
cycles. Here =, ..., 7, may be any integral multiples—positive, negative, or zero—
of the numbers 1/v,, ..., 1/y, respectively. We can write

=t e, s=1,2,007. . . . . . . . (14)

Vs

where the numbers n, are integral. In the form (8) each of the n elements on the
right-hand side corresponds to a different one of the n branches. In the v, elements
corresponding to the conjugate branches of the cycle of order », substitute for the
coefficients 6 corresponding conjugate series beginning with a term in (z—a)™™, or 27",
Do this for each of the » cycles and the resulting function H (2, ) will have precisely
the set of orders of coincidence ,, ..., 7, here in question, and will at the same time
evidently be of rational character for the value z = & (or 2z = x).

Not only can we construct a function H (2, %) of rational character for the value
z = a (or z = »), which possesses the arbitrary set of orders of coincidence =, ..., 7.,
but we can in particular construct a rational function of (2, ) which possesses
precisely this set of orders of coincidence for the value of the variable in question.
To obtain such a rational function, in fact, it evidently suffices in the function H (z, u),
already constructed, to cut off in the series in powers of z—a (or 1/z), which constitute
the coefficients of the powers of u, terms of order sufficiently high to be unaffected by
the orders of coincidence ,, ..., 7,, required of the function.

Let us now suppose for the moment that the equation (1) has reference to the
value z = o, so that the coefficients £, ,, ..., f, are series in powers of 1/z involving,
it may be, a finite number of positive powers of z. The aggregate degree of the
equation in (z, u) we shall indicate by the letter N. Referring to the identities (7),
then, we see that the degrees of the functions Q,(z, %) can in no case exceed N—1.
If now the function H(z,%) in (8) be adjoint for the value z =, the lowest
exponents in the series 6,(1/z) must, as we have already noted, be >—1, and the
degrees in z of these series must therefore all be < 1. The degrees in (z,u) of the
elements 0,Q,(z,%) in (8) will consequently all be < N, and the same will be true of
the degree of the function H (z,u4). It follows that the degree of the function
H (2,u) must be =N—1, because of the rational character of the function for the
value z = . We have just proved then that a function H (z, %) which is of rational
character for the value z = o, and which is also adjoint for this value of the variable
2z, must be of degree = N—1, and we had already proved that the degree of the
principal term in such a function must be =n—1. ‘

§ 2. If a function H (z,u), of rational character for the value z = a (or z =), is
also adjoint for this value of the variable z, we have seen that its principal coefficient
must be integral with regard to the element z—a (or 1/z). We have also seen, in the
case of a set of orders of coincidence corresponding to the value z = o (or z = ),
of which some one at least falls short of what is requisite to adjointness, that a
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rational function of (z,4) can be constructed possessing precisely the orders of
coincidence here in question and having a principal coeflicient which is not integral
with regard to the element z—a (or 1/z).

We say of two sets of orders of coincidence T, ..., ,, and 7, ..., 7,, corresponding
to a value z = a (or z = ), that they are complementary adjoint to each other if
they satisfy the inequalities

Tl+i"1§l£1—1+l,-.o, 'Tr+1—'r§';-ﬂr“‘1+l- . . . . . (15)

121 Vp

When they satisfy the inequalities

TR St —1+ —Vl—, ...,Tr-+$,:::i+ur—1+—3-, ... . (18)
1 r

they are said to be complementary adjoint to the order s. If the sets of orders of
coincidence of two functions for a given value of the variable z are complementary
adjoint, we say also that the functions are complementary adjoint to each other for
the value of the variable in question. The orders of coincidence of the product of
the two functions are evidently obtained on adding the corresponding orders of
coincidence of the functions. If the functions @ (z,%) and ¥ (2, u) are complementary
adjoint for the value z = a (or z = ) their product is adjoint for the value of the
variable in question, and the coefficient of the principal term in the product must
therefore be integral with regard to the element z—a (or 1/z). When we speak of
the principal term in a product it is, of course, to be understood that we mean the
principal term in the product expressed in its reduced form.

In order that a function ¥ (z,u) of rational character for the value z = a (or z = )
shall have orders of coincidence which are complementary adjoint to a given set of
orders of coincidence r, ..., 7,, the necessary and sufficient condition is that the

" coefficient of the principal term in the product ® (2, u) ¥ (2, u) shall be integral with
regard to the element z—a (or 1/z), where @ (z,u) represents the most general
function of (z,u) of rational character for the value z = a (or z = ) whose orders of
coincidence with the branches of the corresponding cycles do not fall short of the
numbers ,, ..., 7, respectively. That this is a necessary condition has been seen in
what just precedes. That it is a sufficient condition may be proved as follows :—
Suppose ¥ (z, %) to be a specific function of (z,u) of rational character for the value
z = a (or z =), and suppose its orders of coincidence for this value of the variable
to be 7y, ...,7,. Furthermore, suppose this set of orders of coincidence not to be
complementary adjoint to the set =y, ...,r,. The numbers + +7, ..., r,+7, then do
not constitute a set of adjoint orders of coincidence, and we can therefore construct a
function H (2, u) of rational character for the value z = a (or z = ) which possesses
precisely this set of orders of coincidence and whose principal term is not integral in
regard to the element z—a (or 1/z).

For the moment we shall suppose that all of the orders of coincidence 7, ..., 7,, are

VOL, COXIL—A. 2y
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finite. The quotient H (2, u)/¥ (2, u) is then a function of rational character for the
value z = a (or z = ») whose orders of coincidence for this value of the variable are
1y ey 7, and yet in its product by the function W (z,u) the principal term is not
integral in character. If then the set of orders of coincidence 7, ..., 7, of the
function ¥ (z,u) be not complementary adjoint to the set of orders of coincidence
Ti, --+, T, the principal term in the product of ¥ (2, %) by the general function ® (z,u),
which possesses the latter set of orders of coincidence, is not integral in character
* with regard to the element z—a (or 1/z). It follows, therefore, that the sufficient, as
well as the necessary condition, in order that the orders of coincidence of a function
¥ (2z,u) of rational character for the value z = a (or z = ) shall be complementary
adjoint to a given set of orders of coincidence i, ..., 7, is contained in the statement
that the coefficient of the principal term in the product of ¥ (z,u) by ®(z,u) is
integral with regard to the element z—a (or 1/z), where ®(z,u) is the general
function of rational character for the value 2= a (orz =) whose orders of
coincidence with the branches of the corresponding cycles do not fall short of the
numbers T, ..., . '

In what precedes we have assumed that the orders of coincidence 7y, ..., 7, of the
function ¥ (z, %) are all finite. Suppose now that certain of these orders of coincidence
are infinite, and that nevertheless the set is not complementary adjoint to the set of
orders of coincidence =y, ..., 7, As before, let ®(z,u) be the general function of
rational character for the value z = a (or z = ) conditioned by the set of orders of
coincidence y, ..., 7, Construct a function ¥’ (z, %) of rational character for the value
z=a (or z =) which possesses for this value of the variable a set of orders of
coincidence which is complementary adjoint to the set =i, ..., , all of its orders of
coincidence being at the same time finite, and each one of them different from the
corresponding order of coincidence in the set 7, ..., %, It is evident that the orders
of coincidence of the function

V' (z,u) = ¥ (2, u) + V¥ (2, u)

for the value of the variable z in question are all finite, and that they constitute a
set which is not complementary adjoint to the set 7, ...,7. By what we have
already seen, then, the principal coefficient in the product @ (z, u) ¥ (2, u) will not be
integral. The principal coeflicient in the product ® (z, u) ¥’ (2, u), however, is integral,
since ¥ (z,u) has orders of coincidence which are complementary adjoint to those of
the set =y, ..., 7. It follows that the principal coefficient in the product ® (z, u) ¥ (2, u)
is not integral. If then the orders of coincidence of a function ¥ (z,u) of rational
character for the value 2 = @ (or z = o) be not complementary adjoint to the orders
of coincidence T, ..., 7, it follows that in the product @ (z,u) ¥ (z,%) the principal
“coefficient is not integral, where @ (z, u) is the general function of rational character
for the value z = a (or z =») conditioned by the set of orders of coincidence
T4, ..oy 7o The necessary and sufficient condition then that a function ¥ (z,u) of
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rational character for the value z = @ (or 2 = ») should have, for this value of the
variable 2z, a set of orders of coincidence complementary adjoint to a given set of
orders of coincidence =, ...,7,, is that the principal coefficient in the product
® (z,u) ¥ (2,u) should be integral with regard to the element z—a (or 1/z), where
® (2, u) is the general function of rational character for the value z = a (or z = «)
conditioned by the set of orders of coincidence =, ..., T,

Without detriment to the truth of the statement just made the expression functwn
of rational character for the value z = a (or z = =) employed with reference to the
functions @ (z, u) and ¥ (z, ) can, in connection with either or both of these functions,
be replaced by the expression rational function of (z, u).

If in the product of a function ¥ (z, u) by the function ® (z,%) the coefficient of
the principal term is integral with regard to the element z—a, the residue of this
coefficient for the value z = a is of course zero. Conversely, however, if’ the residue
of the principal coefficient for the value z = a vanishes in the product of a function
V¥ (z,u) by the general function ® (z,%) whose orders of coincidence for this value of
the variable z do not fall short of the numbers 7, ..., =, respectively, it follows that

.the principal coefficient in question must be integral with regard to the element z—a.
For if the function @’ (2, ) is included under the general function @ (z, %) conditioned
by the orders of coincidence =, ..., r,, and if the principal coefficient in the product
@ (2, u) ¥ (2, u) actually contains a negative power (z—a)~, then also is the residue
relative to the value z = @ in the principal coefficient of the product (z—a)~* &' (z, u)
V¥ (2, u) different from 0, while the function (z—a)* @' (2, %) is evidently included
under the general function @ (z,u) above conditioned by the orders of coincidence
Tyy ooey T 1 then the residue of the principal coefficient for the value z = a vanishes
in the product of a function ¥ (z,u) by the general function ® (2, u), it follows that
the principal coeflicient in question must be integral with regard to the element z—a.

We may then say, in the case of a finite value z = @, that the necessary and
sufficient condition in order that a function ¥ (2, u) should be complementary adjoint
to a set of orders of coincidence 7, ..., =, for the value of z in question, is contained in
the statement that the residue relative to the value z = @ in the principal coefficient
of the product ® (z, u) ¥ (z, u) should vanish, where ® (z, ) represents the most general
function of (2, ) of rational character for z =a whose orders of coincidence with the
branches of the corresponding cycles do not fall short of the numbers =, ..., ,
respectively.

In like manner for the value z = © we may evidently say that the necessary and
sufficient condition in order that a function ¥ (z,u) should be complementary adjoint
to a set of orders of coincidence r, ..., r,, corresponding to the value of the variable in
question, is contained in the statement that the constant coeflicient of the element
zu*~! in the principal term of the product ® (z, 1) ¥ (z, 1) should vanish, where ® (2, u)
represents the most general function of (z,u) of rational character for the value
z = o, whose orders of coincidence with the branches of the corresponding cycles do

2vY 2
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not fall short of the numbers =, ..., r, respectively. The vanishing of the constant
coefficient of the element zu*~' in the principal term of the product ® (z,u)2*¥ (z, w)
then gives the condition that the function z*¥ (z, ) should have a set of orders of
coincidence which is complementary adjoint to the set of orders of coincidence =y, ..., 7,.
This, therefore, is the condition that the function ¥ (z, %) should have orders of
coincidence which are complementary adjoint to the order 2 to the orders of
coincidence 7y, ..., 7,. Also the vanishing of the coeflicient of the element zu"~" in the
principal term of the product ® (z, u) 2*¥ (2, %) is equivalent to the vanishing of the
coeflicient of the element z7*u*~! in the principal term of the product ® (z, u) ¥ (2, u).
The vanishing of the residue relative to the value z = o in the coefficient of the
principal term in the product ® (z, u) ¥ (2, u) consequently gives the necessary and
sufficient condition that the function ¥ (2, %) should have a set of orders of coincidence
for the value z = oo which is complementary adjoint to the order 2 to the set of
orders of coincidence i, ..., ,, where ® (z, %) is the most general function of (z, u)
of rational character for the value z =o whose orders of coincidence with the
branches of the several cycles do not fall short of the numbers =, ..., 7, respectively.
If then @ (2, u) represents the most general function of (z, u) of rational character for
the value z =a (or z =) whose orders of coincidence with the branches of the
corresponding cycles do not fall short of the numbers =, ...,r, respectively, the
vanishing of the residue, for the value of the variable z in question, in the coefficient
of the principal term in the product ® (z,u) ¥ (z, %) gives, in the case of a finite value
z = a, the necessary and sufficient condition that the orders of coincidence of the
function ¥(z, u) should be complementary adjoint to the numbers =, ..., r,, while,
if the functions and numbers here in question have reference to the value z = o,
the vanishing of the corresponding residue in the product ® (z, u) ¥ (z, u) gives the
necessary and sufficient condition that the orders of coincidence of the function ¥ (z, u)
should be complementary adjoint to the order 2 to the numbers =, ..., =,.

In the foregoing statement it would evidently suffice to let @ (z,u) represent the
general rational function of (z, u) whose orders of coincidence for the value of 2z in
question do not fall short of the number =, ..., , respectively—at least so long as
these numbers are all finite. Where we are concerned with the finite value z = a we
might, without detriment to the truth of our statement, further impose on the
rational function @ (z,u) the condition that its coefficients should be integral with
regard to all finite values of z save only the value z = a, with regard to which value
the coeflicients will or will not be integral according as this is or is not required by
the set of orders of coincidence i, ..., 7, In the statement here in question the
function W (z, u) was simply assumed to be a function of (z,u) of rational character
for the value z = @ (or z = =), and the statement therefore holds good in particular
when ¥ (2, ) is a rational function of (2, u).

The product of any two functions @ (z, u) and ¥ (2, %) can be written in the form

O (z,u) V¥ (z,u) = Y (z,u) fz,u)+x (zu), . . . . . . (17)
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where y (z, u) is the reduced form of the product on the left-hand side of this identity.
The factors ® (z, #) and ¥ (z,u) of this product are also supposed to be expressed in
their reduced forms, so that the degree in « of the product is = 2n—2 and the degree
of §(z,4) in u as a consequence is =n—2. If ®(z, u) represents the most general
function of (z, ) of rational character for a given value z = a (or z = ) conditioned
by a given set of orders of coincidence T, ..., =, for this value of the variable z, the
vanishing of the corresponding residue in the principal coefficient of x (2, u) gives, in
the case of a finite value z = @, the necessary and sufficient condition that the orders
of coincidence of the function ¥ (z,u) for this value of z should be complementary
adjoint to the orders of coincidence y, ..., r,, while, in the case of the value z = o,
the vanishing of the corresponding residue in the principal coeflicient of x (z, u) gives
the necessary and sufficient condition that the orders of coincidence of the function
V¥ (z,u) for the value z = o should be complementary adjoint to the order 2 to the
orders of coincidence T, ..., 7,.
§ 3. We shall now assume the equation (1) to be an integral algebraic equation.
- The series representing the branches of the equation for any finite value z = o will
then involve no negative exponents. In the representation of a rational function
H (z,%4) in the form (8) corresponding to the value z = @, the functions Q,(z, u) will
therefore evidently be integral with regard to the element z—a. If the function
H (2, u) be adjoint for the value z = & it is readily seen that it must be integral with
regard to the element z—a. For in this case the lowest exponent in each of the
series 0, in (8) is > —1 and the same is therefore true of the lowest exponent in each
of the coefficients of the several products 6,Q; (2, #). It follows that, in the coefficients
of the rational function H (2, u) represented by the sum on the right-hand side of (8),
the lowest exponent is =0. A rational function H (z, »), which is adjoint for the
value z = @, must then be integral with regard to the element z—a. Furthermore, a
rational function of (2, »), which is adjoint for all finite values of the variable z, must
evidently be an integral rational function of (2, u).

While a rational function H (z,%) must be integral with regard to the element
z—a if its orders of coincidence are to be adjoint for the value z = a, divisibility* by
z—a 1s required from it by a set of orders of coincidence =, ..., , corresponding to the
value z=a when these orders of coincidence severally exceed the corresponding
numbers u, ..., u,—but not otherwise. If, namely, the orders of coincidence of H (z, u)
severally exceed the corresponding numbers u,, ..., u,, the quotient of the function by
z—a will be adjoint for the value z = a, and must, therefore, be integral with regard to
the element z—a. If, however, a single one, =,, of the orders of coincidence which
condition the rational function H (2, ) is not greater than the corresponding number
s then in the representation of the general function in the form (8) the v, corre-

* We here find it convenient to say of a rational function of (z w) that it is divisible by the element
z—a if the function ean be represented as the product of z—« and a function of (z %) in which the
coefficients of the powers of u are power-series in 2z — & not involving negative exponents.
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sponding conjugate series 6 will not be divisible by z—a and will involve an arbitrary
constant term which is independent of the coefficients in the remaining n—v, series 6.
In this case, then, the coefficient of the principal term in the general function H (z, u)
contains an arbitrary constant. The principal term in H (z,%) is, therefore, not
divisible by z—a and the same is consequently true of H (z, ) itself.

We see, then, that the general rational function conditioned by a certain set of
orders of coincidence for the value z = a is or is not divisible by the element z—a
according as its principal term is or is not divisible by this element, and we further-
more see that the principal term is or is not divisible by z—a according as the orders
of coincidence in question severally exceed the corresponding numbers u, or not.
From this it follows in particular that the general rational function conditioned by a
certain set of adjoint orders of coincidence for the value z = @ is divisible by precisely
the same power of the element z—a as the coefficient of its principal term.

We shall employ the letter A to designate the number of the independent
conditions which must be imposed on the coeflicients of the general integral rational
function of (z,u) in order that it may be adjoint for the finite value z = a. Every
extra coincidence over and above adjointness required from the function will impose
an extra condition on its coefficients, for we have seen that we can construct a
rational function which actually possesses an arbitrarily assigned set of orders of
coincidence corresponding to a value z = a, and we have also seen that an adjoint set
of orders of coincidence already requires that the function be integral with regard to
the element z—a. The number of the independent conditions then which are imposed
on the coefficients of the general integral rational function of (z,u) by a set of orders
of coincidence 'y, ..., i/, adjoint for the value z = q, is given by the sum

A+ é1<,u’3—,us+1— ]%—>Vs, R O K<)
where we still have to determine the value of A.

We have seen in §2 that the necessary and sufficient conditions, in order that a
function ¥ (z,) may have a set of orders of coincidence complementary adjoint to a
given set of orders of coincidence Ty, ..., 7., corresponding to a finite value z = a, are
obtained on equating to 0 the residue relative to this value of z in the coefficient of the
principal term in the product ® (z,u) ¥ (z, u), where ® (z, ) is the general rational func-
tion of (2,u) conditioned by the orders of coincidence =, ..., 7, for the value z = a.
If in this theorem we give to each of the numbers =, ..., r, the value 0 and take for
V¥ (z,u) the general integral rational function of (z,u), we evidently obtain the
necessary and sufficient conditions which must be imposed on the coefficients of the
general integral rational function in order that it may be adjoint for the value z = a,
on equating to 0 the residue relative to this value of z in the coefficient of the
principal term in the product ® (z,u) ¥ (z,u), where @ (z,u) is the general rational
function of (2, ), which is algebraically integral in character for the value z = a.
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We may write @ (2, %) in the form

B = 2B Gea), ... (19)
(e—a)

where the notation ¢ (z,u) indicates a polynomial in (z,u) of degree 1—1 in 2, and
where by the notation ((z—a,u)) we designate a polynomial in % in which the
coefficients expanded in powers of (:—a) present no negative exponents. Here, since
®(z,u) is to be of integral algebraic character for the value z = @, the orders of
coincidence of the function ¢?(z,u) with the n branches of the equation (1),
corresponding to the value z = @, must each be =¢. On assuming, as we are free to
do, that ¢?(z,u) is not divisible by the factor z—a, we are forced to take for 7 the
greatest of the » integers [u,], ..., [u,], for this is evidently the greatest value which
we can give to 7 without forcing the function ¢ (z, ) to be divisible by the factor
z—a. Orders of coincidence, namely, which are simultaneously greater than the
numbers uy, ..., u, require divisibility by z—a.

The orders of coincidence ¢ which we here require from the function ¢ (z,u) are
adjoint, and the number of the conditions which they impose on the otherwise
arbitrary constant coefficients of the function is evidently obtained on substituting 7
for each of the » numbers u/;, ..., , in the expression (18). This gives us

A+ni— é] <,uvs—— 1 +;1> v,
for the number of the conditions to which we subject the nz coeflicients of the
otherwise unconditioned function ¢®(z,u). For the number of the arbitrary constants
involved in the expression of the conditioned function ¢ (z, ) here in question we
then have

lA=§’:‘,<,us—1+l>us—-A, Coe e e e e (20)
§=1

Vs

and we can write
I ‘
P (z,u) = = 8 (z,w), . . . . . . . . (21)
s=1 .

where the [, quantities J, are arbitrary constants, and where the I, functions ¢, (z, %)
are specific linearly independent functions.

Now we have seen that we impose on the coefficients of the general integral
rational function W (z,u) the conditions necessary and sufficient for adjointness
relative to the value z = @ on equating to 0 the residue relative to this value in the
coefficient of the principal term in the product ® (z,%). ¥ (z,u). This, however, from
(19), is evidently equivalent to equating to 0 the residue relative to the value z = a
in the coefficient of the principal term in the product

2% G = 3 582 BY)
o ¥ = 2 M e
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We then impose on the coefficients of the function ¥ (2, %) just those conditions which
are necessary and sufficient for adjointness relative to the value z = & on equating to
0 the residue relative to this value of z in the principal coefficient of each one of the
I, products '

@)
271 Gy =19k (22)

That the I, conditions on the coefficients of the function ¥ (z,u4) which we have
" just obtained are linearly independent of one another may readily be seen. For if
the residues relative to the value z = a in the principal coeflicients of the 7, products
(22) were connected by a linear relation with constant multipliers, the linear
expression in the functions ¢,” (z,%) with the like multipliers would be a function
#? (2, %) such that the residue relative to the value z = & in the principal coefficient
of the product

@ ‘

%;—%q—)j’il;\lf(z,u) C e e e e (29)
would be 0, no matter what the coefficients of ¥ (z,%) might happen to be. The
function ¢ (z,4) cannot vanish identically, since by hypothesis the I, functions
$? (z,u) are linearly independent of one another. Suppose u* to be the highest
power of u which appears in the expression of the function ¢“(z,u), and suppose,
furthermore, that a term B(z—a) "% actually presents itself. On choosing for
¥ (z,u) the function a(z—a)~'u"'~* the residue of the principal coefficient in the
product (23) will evidently be Ba, and this residue is not equal to 0 unless we have
a = 0. There does not exist a function ¢ (z,u) then such that the residue relative
to the value z = a in the product (23) is equal to 0 independently of the values of the
coefficients of ¥ (z,u). It follows that the /, equations in the coefficients of the
function ¥ (z,u) obtained on equating to 0 the residues relative to the value z = @ in
the principal coefficients of the /, products (22) are independent of one another.
These equations, however, give the necessary and sufficient conditions for the adjoint-
ness of ¥ (z,u) relative to the value z = o, and we therefore have [, = A. From (20)
we then derive

ZA=A=%* é <,u.s——1+l>us. e e e e e (24)
s=1 v,

For the number of the independent conditions which are imposed on the coefficients

of the general integral rational function ¥ (z,u) by a set of orders of coincidence

W1, .o, iy, which are adjoint for the value z = @, we obtain from (18) and (24) the

expression

2 y—A =2 MISVS—‘ZL b <,u.s—-1+l>vs. e e (25)
s=1 =1 s=1 v

$ s

Representing in the form (19) the general rational function ® (z,%) conditioned by
a set of orders of coincidence 7, ..., T, for the value z = o and equating to 0 the
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principal residue relative to the value z = @ in the product ® (z, ) ¥ (2, 4) we obtain
the necessary and sufficient conditions that the rational function ¥ (z,%) may have
orders of coincidence for the value z=a which are complementary adjoint to the
orders of coincidence 7y, ..., 7. If ¥ (z,u) is an integral rational function, these
conditions are evidently all obtained on equating to 0 the principal residue relative to
the value z = @ in the product

@
%%—)@.\I/(z,u).. L (26)
This, however, is equivalent to equating to 0 in this product the principal residue
relative to the value z = o, since in the principal coeflicient of the product the sum
of the residues must be 0 and the only residues which could here present themselves
would have to correspond to the values z = @ and z = o. The necessary and sufficient
conditions, then, that ¥ (z,u) should have orders of coincidence for the value z = a,
which are complementary adjoint to the orders of coincidence T, ..., r,, are obtained
on equating to 0 the principal residue relative to the value z = o in the product (26).
Supposing the integral rational function ¥ (z,u) to have a definite degree M, and
representing the first factor of the product (26) in the form

(®) n  j-
¢T——-~zf_z;:)’;)= 3% g <<§,U>> (2D

t=1r=1

we see that, on choosing j sufficiently large, the residue relative to the value z = o of
the principal coefficient in the product (26) will be the same as the residue of the
principal coefficient in the product

n  j—1

Syt Y (zu). . . . . . ... (28)
1

t=19p=

The vanishing of the principal residue in the product (28), independently of the
values of the arbitrary parameters involved in the expression of the coeflicients
¥_rn_t then gives the necessary and sufficient conditions in order that the function
V¥ (2, w) may have orders of coincidence for the value z = ¢ which are complementary

adjoint to the orders of coincidence 7, ..., T, the integer y being supposed to be
chosen sufficiently large.
If the orders of coincidence Ty, ..., T, were all adjoint the index 7 in (26) would be 0

and the function ¢ (z,4) would not exist. In this case the orders of coincidence of
V¥ (2, ) would simply have to be 0, or positive, in order that they might be comple-
mentary adjoint to the orders of coincidence y, ..., 7,, and that is already the case for
the function ¥ (z,u) since it is integral, and because we are here assuming the
fundamental equation (1) to be integral. We might remark that where we have
occasion later on in this paper to make explicit use of the results just obtained the
orders of coincidence T, ..., 7, will be none of them positive, On writing

; T,= =0, S=1,2, ..., 7,
VOL. CCXII.—A, 2z
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the numbers o, will then be 0 or positive. To say in this case that a rational function

of (z,u) is conditioned by the set of orders of coincidence =i, ..., =, for the value z = &
is equivalent to saying that it becomes infinite for the branches of the several cycles
corresponding to the value z = @ to orders which do not exceed the numbers o, ..., o,
respectively.

§ 4. We shall now consider the connection between the form of a rational function
of (z,%) and its orders of coincidence for the value z =c. Indicating by ., the
number of the cycles of the equation (1) for the value z = o and by », ..., the
orders of these cycles, we represent by the notation

=Ty PO — L (29)
7 Vy

@

the orders of coincidence which define adjointness for the branches of the several
cycles. On introducing two new variables, ¢ =27, 5 =z ™u, where m is a properly
chosen integer, the equation (1) goes over into an equation

gEn) = +gu ™+ =0, . . . . . . . (30)

in which the coeflicients g, are integral rational functions of & Rational functions of
(¢ ») are rational functions of (z, u), and conversely. The branches of the equation (30)
for the value £ = 0 correspond individually to the branches of the equation (1) for the
value z =  and group themselves in like manner into cycles of orders »,, ..., »,
respectively. Also it is evident that adjointness relative to the equation (80) for the
value ¢ = 0 is defined by the orders of coincidence

1
e o (31)

®

m (n—1)+uw =1+ —}7;), vy M (n=1) b =14
V1

obtained on adding m(n—1) to each of the numbers given in (29). The gencral
~rational function of (g »), which is adjoint relatively to the equation (30) for the value
£=0, is integral with regard to the element ¢ since the equation is an integral
algebraic equation. Furthermore, on referring to formule (24) and (31) we obtain
immediately the expression

bon(a=1)+3 2 (n-10 )0 . (32)
s=1 Vg

for the number of the conditions which must be imposed on the coefficients of the
general rational function of (£ #), of integral character for the value &= 0, in order
that it may be adjoint relatively to the equation (80) for this value of the variable.
Represent the general rational function of (¢, ), of integral character for the value
£=0, by the expression ‘
a1 (E) " Hpua (€)oo tpo (). . . . . . . (88)

The number of the conditions which must be imposed on its coefficients in order that
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it may have the orders of coincidence indicated in (81) is given by the formula (32).
This same formula, then, gives the number of the conditions which must be satisfied
by the coefficients in the expression

e L (&) s (E) 2 (8) . . . . (84)

in order that it may have, for the value ¢= 0, the orders of coincidence indicated
in (29). Also the general rational function of (¢ »), conditioned by the set of orders
of coincidence (29), must be included under the form (84) since the general rational
function of (&, »), conditioned by the set of orders of coincidence (81), is included under
the form (33).

Transforming the expression (34) to terms of (z,) we see that the general rational
function of (z,u), conditioned for the value z = o by the set of orders of coincidence
(29), is included under the form

R o “n(3)
= u" n =)y RN A =}.. . . . . (85
Pr—-1 <Z> W2 Py g ” 2 PP 4 Po 2 ( )

Furthermore, it is obtained from this form on subjecting the coeflicients to a succession
of conditions whose number is given by the expression (32).

Let us now consider, in its reduced form, the general rational function of (z, ») with
its coefficients represented as series in powers of 1fz. The general rational function
so represented, whose coefficients involve no exponent which is <—X\ we shall indicate
by the notation® R_, (1/2,u). Taking A =m (n—1) the general function R_,(1/z, u)
will certainly include all rational functions of the form (85) and will, therefore, in
particular include all rational functions of (z,4) which are adjoint for the value
z=om, To pass from the general function R_, (1/z, u) to the general form given in
(85) we must, for s =1, 2, ..., n, reduce the degree in z of the coefficient of %"~* in the
function from A to m(s—1). In reducing the general function R_,(1/z, u) to the
form (35) then we impose on the coefficients of the function a succession of conditions
whose number is given by the sum

é{x-m(s_1)}=m_g—mn(n._1).. N 1)

To this number we evidently only have to add the number given in (32) in order to
obtain the total number of the conditions which we must impose on the coefficients of
the general function R_, (1/z, ) in order that it may be adjoint for the value z = .

We therefore impose just
nA+3 204: <,us(°°)-—1+ %;5 S 14
s=1 A
conditions on the constant coefficients in the general function R_, (1/z, %) in order that

it may be adjoint for the value z = oo.

* Tt may be noted that a suffix will have the significance here attached to — A only in connection with
the letter R.

22z 2
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It is evident that the statement just made holds not only for A= m(n—1) but
also for any value of the integer X\ so long as it is at least as great as the greatest
degree A" in z which a coeflicient of a power of % in the reduced form of a rational
function of (z,u) can have consistently with adjointness for the value z =, We
see, namely, that among the conditions whose number is given in (37) are included the
n (A\—\") conditions, which dispose of the terms of degree >\’ in the coeflicients of the
powers of w.

Let us now denote by 4 an integer which is at least as great as the greatest of the
integers [u1,""], ..., [, "] and impose on the general function R_, (1/z, ») the order of
coincidence 7 with each of the branches of the fundamental equation corresponding to
the value z = . The orders of coincidence ¢z here in question are evidently adjoint
and over and above the conditions requisite to adjointness, whose number is given in
(87), impose on the coefficients of the function R_, (1/z, ) further conditions, whose
number is given by the sum

b3 <«£—MS<°°>+1-—(1;3) @, .. (38)
§=1 Vg

The total number of the conditions here imposed on the coefficients of the general
function R_, (1/z, ) by the orders of coincidence 1 is therefore

n(i+0)—% ¥ < @ _ 14 (1@)) S (39)
We shall now assume not only that A has been chosen at least as large as the
greatest degree of a coefficient in a rational function R (z, %) which is consistent with
“adjointness relative to the value z = o on the part of the function, but also, where
this is not already implied, that it has been chosen at least as large as the greatest
degree of a coefficient which is consistent with orders of coincidence relative to the
-value z = o, which are none of them negative. Let us assume for the moment, too,
that we have chosen ¢ positive—what is not necessarily implied for all cases in what
precedes. Now impose on the coefficients of the general function R_, (1/z ) first
the conditions required by a set of orders of coincidence for the value z = o, each one
of which is 0. Thereafter imposing on the coeflicients the n¢ further conditions
required by a set of orders of coincidence, each one of which is 7, we arrive at the total
number of the conditions given in (39). Substracting n¢ then from this number we
obtain the expression

m—%fﬁ @) — 1+ (1@)) S (40)

s=1 Vg
for the total number of the conditions imposed on the coefficients of the general
function R_, (1/z,4) by a set of orders of coincidence for the value z = «, each one

of which has the value 0.
From (40) we see, where ¢ is an integer positive or negative, that the expression
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(89) gives the number of the conditions imposed on the coefficients of the general
function R_, (1/z,4) by the orders of coincidence ¢ for all n branches, so long as A
has been chosen at least as large as the greatest degree of a coefficient in a rational
function R (z, ) which is consistent with the orders of coincidence ¢ here in question.
For ¢ positive this is evident. For negative 1 = — 7 it is plain that the coefficients of
the general function R_, (1/z, u), already conditioned by the orders of coincidence —j
for all » branches, must be subjected to 7y further conditions if we would increase
its orders of coincidence to 0 for all n branches. These ny conditions are counted in
the expression (40), which gives the number of the conditions required by the orders
of coincidence 0 for all n branches. Subtracting nj then from this expression, we
obtain, for the number of the conditions imposed on the coefficients of the general
function R_, (1/z, u) by the negative orders of coincidence 4+ = —j for all # branches,
the expression given in (39).

Indicate by =, ..., +.  any set of orders of coincidence with the branches of the
r, cycles corresponding to the value z = o, and take the integer ¢ equal to or less
than the least of these. We have in (39) an expression for the number of the
conditions imposed on the coefficients of the general function R_, (1/z, ) by the
orders of coincidence 7 for all # branches, where we assume that A has been chosen at
least as large as the greatest degree of a coefficient in a rational function R (z, u)
which is consistent with the orders of coincidence ¢ here in question. To obtain
the number of the conditions imposed on the coefficients of the general function
R_, (1/z, u) by the set of orders of coincidence =, ..., 7,,, we must evidently add
to the expression (39) the number represented by the sum

T .
¥ (0 —5) 5,
s=1

This gives us for the number of the conditions imposed on the coefficients of the
general function R_, (1/z,%) by the set of orders of coincidence ', ..., r, ), the
expression ' ‘
-

= 8§ =

[e] ]'\ @
<,LS< )~1+75)v8( N 5 )
1 Vg

We have derived this formula on assuming that X has been chosen at least as large
as the greatest degree of a coefficient in a rational function R (z,4) which is
consistent with the orders of coincidence ¢ for all n branches. It is now evident,
however, that the formula holds so long as A is not less than the greatest degree A’ in
z which a coefficient in a rational function R (z,u) can have consistently with the
possession by the function of the orders of coincidence =, ..., =, . For among
the conditions whose number is given in (41) are included the n (A—)’) conditions
which make the terms of degree >\’ in the coefficients of the powers of « vanish.

Under the general rational function R_, (1/z, u), with coefficients of degree A in z,
is evidently mcluded the general rational function of degree X in (z,u). To pass
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from the former function to the latter function we should have, for s =1, ..., n—1, to
reduce the degree of the coefficient of %* from X\ to A—s. This would impose on the
coefficients of the function R_, (1/z,«) in all n (n—1) conditions. Now we have seen
in § 1 that the degree of a rational function of (z,u), which is adjoint for the value
z =, must be = N-—1, Taking X\ = N—1, formula (37) gives us

A (N=1)+% ¥ (,L;w—n L )w
8§=1

VS(CD)

for the number of the conditions which must be imposed on the coefficients of the
general function R_y,,(1/z, ) in order that it may be adjoint for the value z = oo.
Among these conditions are included the §n (n—1) conditions requisite to reduce the
general function here in question to degree N—1. For the number of the conditions
which must be imposed on the coefficients of the general reduced rational function of
(2, u) of degree N—1, in order that it may be adjoint for the value z = o, we then
obtain the expression

n(N—l)mgl—n(n—l)-i—%2<M¢‘°"’~1+ 1>V;°°>.. L (42)

s=1 Vs(m)

More generally, on subtracting 4n(n—1) from the expression given in (41), we
obtain

—in(n—1)+ 3 21 F <,‘4;‘”>~1+ 1 >V;°°> L. (48)
s=1 g§=1 .

l,S(OO)

for the number of the conditions imposed on the coefficients of the general rational
function of (z,u) of degree A by the set of orders of coincidence =, ..., 7., where A
is not less than the greatest degree which a rational function can have and yet
possess these orders of coincidence.

The general rational function of (z,u), whose coefficients are of degree A in z, we

shall represent in the form
R_, <l,u> = R®_, <l,u> 427" <<l,u>> s e e e (49)
z z z

where in the first element the index () signifies that in the coefficients, arranged
according to powers of 1/z, the highest power which may appear is (1/2)"", while in
the second element the notation ((1/z, %)) signifies a reduced polynomial in » whose
coefficients, expanded in powers of 1/z, present no negative exponents. Taking
i sufficiently large and imposing on the function R_, (1/, u) the orders of coincidence
), ..., 7, for the value z = o the coefficients of the second element in the sum on
the right of (44) will be unaffected. The number of the conditions to which the
coefficients of the function R_,(1/z,u) are thereby subjected, and therefore the
number of the conditions imposed on the coefficients of the function RY_,(1/2,u) by
the orders of coincidence here in question, is given by the expression (41) on assuming
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that X has been chosen sufficiently large. Subtracting this expression from n (A+¢),
the total number of the constant coefficients in the general function R?_, (1/z, u), we
obtain the expression

§<M;°°>—1+i>u;w>,. L. (45)

T
ly =nt— = 7% +3% =
1 Vs

. s= s

for the total number of the arbitrary constants involved in the function R?_, (1/z, u),
conditioned by the set of orders of coincidence =, ..., =, . Dropping the now
superfluous suffix, —\, we may say that the expression (45) gives the number of the
arbitrary constants involved in the general rational function R®(1/z, »), conditioned
by the orders of coincidence =, ..., 7,,*), where the index (7) still implies that the
~ coefficients of the rational function expanded in powers of 1/z involve no powers as
high as (1/2).
In the representation

R@,u):R“’@,u)-l—z“i(@,u» B 1))

\

of the general rational function of (z, ) conditioned by the set of orders of coincidence
L 1) corresponding to the value z = oo we shall find it convenient to write

a (1 __ % e, ol
CR I R
so as to bring into evidence the /. arbitrary constants ¢, involved in the element
R®(1/2,u). The I, functions ¢,” (1/z, u) are specific linearly independent functions
of the form implied by the index (#) and possessing for the value z = o orders of
coincidence which do not fall short of the orders of coincidence ), ..., =, ) respec-
tively. The number /., it is to be borne in mind, depends not alone on the orders of
coincidence =, ..., 7., * here in question, but also on the particular value chosen for
the integer ¢ It is, also, not to be forgotten that s is taken so large that terms
involving powers of 1/z higher than (1/z)"" are not conditioned® by the orders of
“coincidence =, ..., ... The general rational function of (z, u), conditioned by the
orders of coincidence =, ..., .., we shall then represent in the form

-3l ()
R<z,u>—- saé‘s ¢ (2 ) +27H (25w coe ... (48)

where the number /., is given by the expression in (45) and where the constant
coefficients in ((1/z, u)) are all arbitrary.

In order that a rational function ¥ (z,u4) may be complementary adjoint to the
general function R (1/z,u4) here in question, for the value z=o, we know it is

* When we here say that a term is not conditioned by the orders of coincidence 71, ..., 7, we mean
that it already possesses orders of coincidence at least as great as these.
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necessary and sufficient that the constant coefficient of zu"* should be 0 in the
reduced form of the product

R@,u)\lf(z,u). e s (49)

with the coefficients of the powers of % expanded in powers of 1/z. In order that the
orders of coincidence of a rational function ¥ (z,u) for the value z = © may be com-
plementary adjoint to the order 2 to the orders of coincidence =, ..., *), it is
necessary and sufficient that the principal residue, relative to the value z = oo, in the
product (49), should be 0. This we have seen in § 2. In order, then, that the orders
of coincidence of the function ¥ (z, ) for the value z = o should not fall short of the

— (») —

orders of coincidence 7, ..., 7, ) defined by the equalities

® - (0 ® _I_
7470 = Pl 5, s=1,2, 0,0, 0 . . L. (50)
l/S

it is necessary and sufficient that the principal residue in the product (49) should
be 0. Among the conditions imposed on the constants in the function ¥ (z,u) by the
orders of coincidence here in question are included those obtained on equating to 0 the
principal residue relative to z =« in the product

R‘”<lz,u>\lf(z,u). Ce e e e e (BY)

To the function ¥ (z, %) we shall now give the form

n -1 .
> Z oL oL (52)
(=1 q=—i+2

V¥ (z,u) =

"We shall assume that the integer 7 has been chosen so large that terms involving
z~" and higher powers of 1z are unconditioned by either of the sets of orders of
coincidence ', ..., 7., or #*), ..., % . Furthermore, we shall assume, where
~ this is not already implied, that ¢ has been chosen so large that a rational function of
(2, u), conditioned by either of these sets of orders of coincidence, cannot involve
a power of z higher than #z-%. The function R®(1/z,u) is then of the type
RY_o (1/z,u).
Write the product (51) in the form
R9_,., <1,u> > tzl Wy AU L L (53)
z t=1 q=—{+2

with the constants a,_; ,_, as yet arbitrary. Now equate to 0 the principal residue
in this product. We thus subject the constants «,_;;_, to /., independent conditions,
that is to say, we subject these constants to as many conditions as there are arbitrary
constants involved in R¥_, ,(1/z,u4). To see this we note first that the principal

residue in a product
n 2—1
¢? <1,u> 22 a0 L. (54)

Z Jt=1g=—i+2
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cannot be 0 independently of the values of the constants a, ,, , where ¢®(1/z,u)
is a specific function of the type R®_, ,(1/z,u). We shall suppose that ¢ (1/z, u)
actually contains a term Bz~%"~' and that «"~* is the highest power of % which
appears in the function, while 277 is the highest power of 1/z which actually presents
itself in the coefficient of this power of . For the second factor in the product (54)
we shall take the single term a,_, ;,_,227'u*'.  The principal residue of the product is
then evidently Ba,_, ,_, and is not 0 independently of the value of a,_, ,_;. To equate
to 0 the principal residue in a product of a type (54) then imposes a condition on the
constants a, ;. ;. '

Represent the first factor of the product (58) in the form given in (47) and equate
to 0 the principal residue in the product for arbitrary values of the Z, constants 8,.
We thus subject the constants «,_,, , to /., conditions. The individual conditions are
obtained on equating to 0 the principal residues in the products

n -1 ‘
¢s(i)<l7 u> Z 2 e s = L2l oo (55)

o
Z t=1q=—4+2

That the /., conditions so imposed on the constants a,_,, , are linearly independent of
one another is readily shown. For suppose that there is a linear equation connecting
the principal residues of the /.. products (55), regarded as linear expressions in the
constants «,_; ,_;, and suppose in this equation that the multipliers are d,, ds, ..., d,,
respectively. Constructing the function

lo
(L) = 2 apo(du),
/ s=1 7

we see that we should have the principal residue equal to 0 in a product of the type
(54) independently of the values of the constants «,_, ;,_;. This, however, we have seen
to be impossible. It follows that the /. conditions to which we subject the constants
@, 141 on equating to O the principal residues in the products (55) are linearly
independent of one another.s On equating to 0 the principal residue in the product
(53), for arbitrary values of the /., constants &, involved in the first factor, we then
impose on the constants a,_,,; just /. linearly independent conditions. These
[, conditions are all necessary in order that the function

¥ (2, u) = >3 2 Oy_y,s12? U

t=1q=~7+2

should have orders of coincidence for the value z = o which do not fall short of the
numbers 7, ..., 7, ) respectively. To prove that these conditions are also sufficient
we only have to show that [, is the total number of the conditions to which we must
subject the constants a,_, ,_; in order that the function \If (#, v) may have the orders
of coincidence 7, ..., 7, for the value z = .

VOL. OCXII.—A. 3 A_
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For the number of the conditions imposed on the coefficients of the function ¥ (z, u)
by the set of orders of coincidence 7, ..., 7., we derive from (41) the expression

o] o] T‘o:) o 1 oo}
n(i—2) + 2 7 (0 () 1 %1 <Ms< . y‘°°’> 2 (),

From the equalities (50) we have

700 o T 1
> Ts(m)Vs(CQ)"i‘ > ,7—_8(00)1/8(00)_2%__‘ > < (®) ) () _ O,

el
§=1 s=1 s=1 ( )

and by the aid of this equality the expression preceding can evxdently be written in
the form

$=1 §=1

S S W OSSN T AN LY
n— 2 1 by 2 =1 (m)> .

This then is an expression for the total number of the conditions to which we must
subject the coefficients a,_, ;_, in order that the function ¥ (z, u) may have the orders
of coincidence 7, ..., 7, ). This is, however, also the expression for /, given in (45).
The total number of the conditions which we must impose on the coefficients of the
function ¥ (z, #) in order that it may have the orders of coincidence 7, ..., 7, ) is
therefore /, and the conditions themselves are all obtained on equating to 0 the
principal residue in the product (51) for arbitrary values of the constants §,* involved
in the factor R®” (1/z,%). The necessary and sufficient conditions then in order that
the function ¥ (z,%) may have for the value z = o orders of coincidence which are
complementary adjoint to the order 2 to the orders of coincidence =, ..., r, * are
obtained on equating to 0 the principal residue in the product (51), where the
function R® (1/z, ) is conditioned by the set of orders of coincidence =, ..., . .
On taking in particular for the function ¥ (z, ) the integral polynomial form

¥ (z,u) = t§] ZZ]]ocq]tlzq WL (56)

q

1t must evidently still hold true that the necessary and 'sufficient conditions in order
that the function ¥ (2, #) may have for the value z = o orders of coincidence which
are complementary adjoint to the order 2 to the orders of coincidence =, ..., 7,
are obtained on equating to 0 the principal residue in the product (51). It is to
be borne in mind that throughout the preceding argument we have assumed the
integer ¢ to be chosen sufficiently large for our purpose. We assumed, namely, that
it was chosen large enough at least to ensure that the coefficient of a term involving
z=* or a higher power of 1/z was not conditioned by either of the sets of orders of
coincidence =, ..., 7, ), or 7 ... 7, ) and at the same time we assumed that the
possession of either of these sets of orders of coincidence by a function was incom-
patible with the presence in the function of a term involving z to a higher power than

#=%. If ¥ (2,u) is a polynomial of assigned degree M in z the necessary and sufficient
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conditions that it may have the orders of coincidence 7, ..., %, ), for the value
2 = are obtained as above on equating to 0 the principal residue in the product
(51), where the integer ¢ is subject to the conditions already specified, but where it is
well to bear in mind that the formula (56) implies that ¢ has been taken = M +2.

§ 5. The number of the cycles into which the branches of the equation (1) group
themselves for a finite value z = a, we shall indicate by the symbol »,, and the orders
of these cycles we shall designate by »®, ..., », ¥ respectively. For the corresponding
numbers in connection with the value z = o we have already employed the symbols
7o and »®, ..., %, . So in general, numbers associated with the value z = a, will
be designated by an index or suffix «, and those associated with the value z =« by
an index or suffix . For example, adjointness relative to a value z = a, is defined
by the orders of coincidence

w9 =1+ ;‘1:%5, ceey ,urK(")—l-i- :i(;;)

When we speak of a set of orders of coincidence for a given value of the variable z it

will always be understood, of course, that these are integral multiples of the corre-
sponding numbers 1/»%, ..., 1fy, ©.

A set of orders of coincidence corresponding to a value z = a, we shall designate by

the notation %, ..., =, ®. Assigning a system of sets of orders of coincidence for all

values of the variable 2, the value z = o included, we shall designate such system by
the notation (+). We shall here understand that all but a finite number of the orders
of coincidence involved in a system (r) have the value 0. Such a system (+) we shall
call a Basis of Coincidences for the building of a rational function, or, more briefly,
we shall simply refer to it as the basis (v). A rational function of (z,u) we shall say
is built on the basis (7) if its orders of coincidence for the different values of z in no
case fall short of the corresponding orders of coincidence given by the basis. We
shall say of two bases () and (7) that they are complementary to each other when
for finite values z = a,, the corresponding orders of coincidence furnished by the
bases are connected by the relations ’

FOLEP = P s s =10 e, . . . . .. (57)

ys(x) 2

while for the value z = o the orders of coincidence are connected by the relations

47 = 1 —(1;); s=1,2,..,7. . . . . . (58)
VS
By the notation () we shall designate that part of the basis (+) which has reference
to finite values of the variable 2z, and by () we shall mean that part of the basis ()
which refers to the value z =o. We shall then speak of a rational function of (z, u)
which is conditioned by the partial basis (r)" or by the partial basis (=)
3 A2
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Any rational function of (2, %) can be represented in the form

H(z,u)=%M+P(z;u), Y 12

Z—a, )

where P (z,u) is a polynomial in (z,u), where the summation is extended to a finite
number of values z = @, only, and where any numerator ¢% (z,u) is a polynomial in
(2, u) of degree 7,—1 in z. The polynomials are here, of course, assumed to be reduced
n .

We shall first assume that the basis () involves no positive orders of coincidence
for finite values of the variable 2z, no such restriction, however, being made for the
value z = o, Writing % = —¢,%, we may say of a function built on the basis ()
that, for a finite value z = a,, it becomes infinite to orders which do not exceed the
respective numbers of the corresponding set «®, ..., s, *, while for the value z = o

its orders of coincidence do not fall short of the numbers -, ..., 7, * respectively.

® are zero or positive, whereas the numbers +,*) may be positive,

Here the numbers o,
zero, or negative. The orders of coincidence furnished by the basis (7) for finite
values of the variable z are in this case plainly all adjoint.

Suppose H (z, ) in (59) to be the general rational function of (z, u) conditioned by
the partial basis (r)’ here in question. The polynomial P (z, %) is evidently arbitrary.
Furthermore we may, in the summation on the right-hand side of the formula, take

for 4, the greatest of the integers
[e94e®]; s=1,2,..c,7% . . . . . . . . (60)

To show this we note that the orders of coincidence of the numerator ¢ (z, ) with
the branches of the respective cycles corresponding to the value z = @, must not fall
short of the numbers

=, s =1,2,..,7 . . . . . . . . . (61)

These numbers, however, would be simultaneously greater than the corresponding
numbers 1% if we should give 4, a value greater than the greatest of the integers in
(60), and the numerator ¢ (z,u) would therefore, by a theorem proved in §3, be
divisible by the factor z—a,.

Choosing then for ¢, the greatest of the integers in (60), we readily see that the
orders of coincidence in (61) are not simultaneously greater than the corresponding
numbers «,®, and that therefore the general numerator ¢ (z,u) is not divisible by
the factor z—a,. We see at the same time that the orders of coincidence in (61)
are adjoint relatively to the value z = a,. As a consequence, the number of the
conditions to which we must subject the otherwise unconditioned constants in the
general function of the type ¢“ (z,u4) in imposing on it the orders of coincidence
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given in (61) is obtained on substituting these orders of coincidence for the symbols
', in (25). For the number of the conditions in question we thus obtain

Te e 1
Me— 2 o W—% = (//.,(")—1+-—(;5>v,("). e . (62)
1 s=1\ Vg

Subtracting this number from the total number =i, of the arbitrary constant

coefficients in the unconditioned function of the form ¢ (2, u), we obtain the
expression

K

” 7
X, K, A K. 1 K,
lx=za;>us”+%2<ﬂ;>—1+ (K)>V,“ o . . . . (83)
1 s§=1 Vs

8=

for the number of the arbitrary constants involved in the numerator ¢ (z,u) of an
element of the summation on the right-hand side of (59). This numerator then we
can write in the form

2
¢ (zu) = 2 89 (zu), . . . . . . .. (64)
s=1

where the I, coefficients 8% are arbitrary constants, while the I, functions ¢, (z, u)
are linearly independent and possess orders of coincidence for the value z = a, which
do not fall short of the numbers given in (61). It is evident that the summation in
(59) is to be extended not only to all those finite values of the variable z to which
negative elements in the basis (+) correspond, but also to all those values z = a, for
which the corresponding numbers [1,*], ..., [&, ], are not all 0, even if the
corresponding elements in the basis (+) are all 0.

In order that a rational function H (z,u) should be built on the basis (+), it is
necessary and sufficient that it should be simultaneously representable in the two
forms (48) and (59). Identifying the representation of the function H (z, u) given in
(59) with the representation given in (48), we have

e 20, G leo ‘ '
>3 899, (2, 1) u)+ > 83‘°°)¢,“')<l u) = —P(z, u)+z"'<<1;,u>>. .. (65)
s§=1

x §=1 (Z—-a,‘)i‘ Z,

. lo
Here P (z,u) evidently identifies itself with that part of the sum — 2 8¢, (1/z, )
s§=1

which is integral in (z, u) and the conditions to which the constants § are subjected,
because of the identity (65), are obtained on developing in powers of 1/z the
coefficients of the several powers of % on the left-hand side of the identity and
equating to 0 the aggregate coefficient of z=%"~* for the values ¢ =1,2,...,¢—1;
t=1,2,...,m,since 0 is the coefficient of the corresponding term on the right-hand
side of the identity. If for ¢ = ¢ we equate the coeflicient of z~%"~* on the left-
hand side of the identity to the corresponding coefficient on the right-hand side, we
so determine an otherwise unconditioned coefficient of the expression z=*((1/z, %)) in
terms of the constants J. The coeflicient of z=%"' on the left-hand side of the
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identity is an expression linear in the constants J which we shall represent by the
notation ¢_, ,_,.. The conditions imposed on the constants § by the identity (65) are
then embodied in the identity

n ¢—1
2 2 Cogn?™ W™ =0. . . . . . . . . (66)

3 q=

The n (1—1) conditions imposed on the constants ¢ by the equations
Cognt=0, ¢g=1,2,...,i—1; t=1,2,...,n. . . . . (67)

may or may not be independent of one another.

The general rational function of (z,%) conditioned for the value z = a, by the orders
of coincidence 7,%, ..., . © can, after the analogy of the function ®(z,) in formula (19),
be represented in the form

%“’_LZ;)E;}JF((Z-%,U)).. N (1)

Furthermore, the first element in this expression can, after the analogy of formula
(27), be represented in the form

W0 _— \
(1) _ > 2 y_ q,nntz“’u"‘mrz‘jn<<lz,u>). N (1)

(7 a)"‘ t=1 ¢g=1

From (64) we see that the coefficients y*_,,_, on the right-hand side of this identity
are linear in terms of the /, arbitrary constants J,*.

Taking ¥ (z,u) an integral rational function of (z,u) of arbitrarily assigned degree
M in z and equating too the principal residue relative to the value z = o in the
product

n el

S 2wt Y (zu), .. . . . . . (70)

t=1 ¢=1
we see, on referring to formula (28) and the related text, that we thus obtain the
necessary and sufficient conditions in order that W (z,%) may possess for the value
z = a, a set of orders of coincidence which are complementary adjoint to the orders of

coincidence =, ..., 7., the integer j, being assumed to have been taken sufficiently

)

large. For the degree M of W (z,u) in z we shall find it convenient to choose a
definite integer, and for this definite integer it will suit our present purpose to select
the greatest degree in z of a rational function of (z,u) which is compatible with the
possession by the function of the orders of coincidence #, ..., %, for the value
z=omo. Wae assume, then, that M has been so chosen, and at the same time we
assume that the integers j, corresponding to the various values z = a, have all been
taken sufficiently large.

In §4 we saw that the necessary and sufficient conditions in order that an integral
rational function ¥ (z,u) should, for the value z= o, have orders of coincidence


http://rsta.royalsocietypublishing.org/

N

a
A
1~
A B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N

A \

I~
b \

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

THEORY OF ALGEBRAIC FUNCTIONS OF ONE VARIABLE. 367

which are complementary adjoint to the order 2 to the orders of coincidence
), ..., 7, ) are obtained on equating to 0 the principal residue relative to the value
z = o in the product
) lon
R® <lz’ u) V(z,u) = — 2 8¢ (lz’ u) .V (2, u).
s=1 N

Here R®(1/z,u) is the general function of the form implied by the index, subject to
the condition that it possess the orders of coincidence =, ..., , . Furthermore,
the index ¢ exceeds by 2 at least the degree of ¥ (z,u) in z and is at the same time so
large that a term involving z7%, or a higher power of 1/z, is unconditioned by either of

the sets of orders of coincidence =™, ..., 7, or 7, ... 7, .
Writing

n

& -1
s§1 Ss(m)‘ﬁs(i) <_1£,u> — —-P(Z, ’LL)-—I— >3 y(m)_q’n_tz—qun—t, L (71)

t=1 q=1

we see that the necessary and sufficient conditions in order that ¥ (z, %) may have for
the value z = oo orders of coincidence which are complementary adjoint to the order 2
to the orders of coincidence =, ..., . are obtained on equating to 0 the principal
residue relative to the value z =« in the product

n  4—1
2 2wt Y (zu). .. . . .o (72)
t=1g=1
Here the coefficients y*_, ,_, are linear in the arbitrary constants 6,”. Choosing the
integer ¢ sufficiently large we shall now take this for the value also of each of the
integers 7, above. For the constants c_,,_, in (66) we evidently have

Cognt =24 gy g=1,2,.0,0=1; t=1,2,...,n, . . . (73)

where the summation with regard to « is supposed to extend not only to the finite
values z = a,, which appear in the double summation in (65), but where it is also
assumed to contain the term _,,_,. The expressions c_,,_, are linear in terms of
the arbitrary constants ¢ corresponding to the finite values z = @, and the value z = .
On equating to 0 independently of the values of the arbitrary constants & the
principal residue relative to the value z = o in the product
-1

> Doyt Y (zu) . o L (74)

t=1 ¢q=1

we evidently obtain the necessary and sufficient conditions in order that the integral
rational function ¥ (z,u) of degree M in z should be built on the basis () com-
plementary to the basis (+). The conditions so obtained namely coincide with the
aggregate of the conditions obtained on equating to 0 the principal residue relative to
the value z = o in each of the products (70) and in the product (72).
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Tf in the product (74) we take for the function ¥ (z,u) the general integral
rational function of degree ¢—2 in 2z, and if in this product we equate to 0
independently of the values of the arbitrary constants § the principal residue relative
to the value z = o we evidently also in this case obtain the necessary and sufficient
conditions that the function ¥ (z,%) may be built on the basis (¥). For the conditions
so arrived at include among them the conditions obtained on equating to 0 the
principal residue relative to the value z = o in the product (72). These conditions,
however, are necessary and sufficient in order that, for the value z = o, the integral
rational function ¥ (z, u) of degree 7—2 in z should have orders of coincidence which
are complementary adjoint to the order 2 to the orders of coincidence ', ..., =, .
They therefore involve the reduction of the degree of ¥ (z,%)in z from ¢—2 to M.
On taking, then, for ¥ (z, %) in the product (74) the general integral rational function
of (z,u) of degree 1—2 in z and equating to 0 independently of the values of the
arbitrary constants § the principal residue relative to the value z = » in the product
we impose on the coefficients of the function ¥ (z,u) the necessary and sufficient
conditions in order that it may be built on the basis (7).

The general integral rational function ¥ (z,u), of degree 1—2 in z, conditioned by
equating to 0 the principal residue in the product (74), independently of the values of
the arbitrary constants d, is readily seen to be the most general rational function built
on the basis (7). For the orders of coincidence furnished by the basis (7) for finite
values of the variable z are here all adjoint, and therefore the general rational
function of (z,u) built on the basis () must be integral. Also ¢+ was chosen suffi-
ciently large so that a rational function conditioned for z =oo by the orders of
@, 7, could not be of degree in z greater than +—2. We might
here again recall the limitations imposed on our choice of the integer ¢ in the
preceding argument :—It was taken = M+2 and also so large that terms involving
z~" and higher powers of 1/z in the coefficients were not conditioned by the partial
bases (v) and (7). At the same time we required 2 to be sufficiently large to
serve for each of the integers j, in the products (70), the least values eligible for these
integers being severally dependent on the degree M of ¥ (z,u) in 2.

§6. The n(i—1) coefficients ¢_,,_, regarded as linear expressions in the arbitrary
constants ¢ may or may not be linearly independent of one another. We shall
suppose that just A of them are linearly independent of one another, the remaining
n(1—1) —X coefficients being linearly expressible in terms of these. Indicating such A
linearly independent coefficients by the notation ¢, ..., ¢, we shall assume that the
n(1—1) coeflicients ¢_,,_, are all expressed linearly in terms of these X\ coefficients.
The principal residue relative to the value z = o in the product (74) will then be an
expression bilinear in ¢, ..., ¢, and the coefficients of ¥ (z,u). In this expression
equating to 0 the multiplier of each of the quantities ¢, ..., ¢,, we impose on the
constant coefficients of W (z,u) conditions not greater in number than A. The
function ¥ (2, %) so conditioned is built on the basis (%), for with ¥ (2, %) so conditioned

coincidence 7
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the principal residue relative to z =« in the product (74) is 0 independently of the
values of the arbitrary constants 8. The general rational function of (z,%) built on
the basis () must then involve at least n (¢—1)—\ arbitrary coeflicients, since the
general integral rational function ¥ (z,u) of degree +—2 in z has n (z—1) arbitrary
constant coeflicients. :

Indicating by 7 (i—1)—)\' the actual number of arbitrary coefficients involved
in the general rational function ¥ (z,u) built on the basis (7), we have
n(t—1) =N = n(:—1) =X, and therefore N’ =A. Let us now consider the product

:LZI z211 ¢ gme W W (zyu) . . . o . ... (7D)
=1 q=
in which the n(i—1) coefficients ¢_,,_, are arbitrary constants, while ¥ (z,u) is a
specific function of degree in z not greater than ¢—2. The principal residue in this
product cannot be 0 independently of the values of the constants ¢’_,, ;. For if
u*! be the highest power of u which appears in ¥ (z,u), and if the term
@y 1? U (g1 ey # 0) actually presents itself in the function, the principal

residue in the product
/ - -t
¢ _gn ¥ (2, )

is evidently ¢/_, ,_,_1,s_1, Which can only be 0 for ¢’_, ,_, = 0.
Let ¥, (z,u), ..., ¥,(2,%) be p linearly independent integral rational functions of
degree in z not greater than 1—2. If in each of the products
n  i-1
S S e wt Y(zu);s=1,2,..,¢ . . . . . (76)
t=1 ¢=1
we equate the principal residue to 0, we impose p independent conditions on the
constants ¢/_,,_,. For suppose the principal residues in the p products, regarded as
expressions linear in the arbitrary constants ¢’_,, ,, to be linearly connected, and
suppose d, ..., d, to be the respective multipliers in the relation existing between
them. On constructing the function '

Y (z,u) = dy¥, (z,u) +... +d, ¥, (2, ),

the principal residue relative to z = o in the product (75) would be 0 independently
of the values of the constants ¢/_,,_,, and this we have seen to be impossible. It
follows that we impose p independent conditions on the arbitrary constants ¢’_,,_;
when we equate to 0 the principal residue relative to the value z = o in each of the p
products (76). If, then, in the product (75) the integral rational function ¥ (z,%), of
degree 1—2 in z, involves a certain number of arbitrary coefficients, we impose just
this number of conditions on the constants ¢/_,,_, on equating to 0 the principal
residue relative to z = in the product (75). This means that we connect the
constants ¢/_, ,_, by this number of independent linear equations.
VOL. COXIL—A. 3B
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Suppose the function ¥ (z, %) to be the general rational function built on the basis
(7). It then involves just n(i—1)—\' arbitrary coefficients. Equating to 0 the
principal residue relative to the value z = o in the product (75) independently of the
values of the n(i—1)—)\ arbitrary coefficients in ¥ (z,u), we force the constants
¢ _, . to satisfy this many independent linear equations. These n(¢—1)—\ linear
equations must then be satisfied by the coefficients ¢_,,_, in the first factor of the
product (74) independently of the values of the constants J. For independently of
the values of the arbitrary constants § involved in the coefficients c_,,_; in (74) the
principal residue relative to the value z = o in the product is 0 when ¥ (2, %) is the
general rational function built on the basis (7). Regarded as linear expressions in
the constants J, then n (¢—1) =)\’ of the n (¢—1) coeflicients ¢_,,_; in (74) are linearly
expressible in terms of the remaining N\’ coefficients. It follows that the number of
the coefficients ¢_,,_, which are linearly independent of one another is Z\. The
number of these coefficients which are actually independent of one another is, however,
X.  We therefore have A =)\. We have, however, already found X’ =X. We derive
X = A. The number of the arbitrary coefficients involved in the general rational
function built on the basis (7) is then 7 (i—1)—X, and this is also precisely the
number of the coefficients ¢_,,_, which are linearly expressible in terms of the
remaining X coefficients.

Employing the notation N; to designate the number of the arbitrary coefficients
involved in the expression of the general rational function built on the basis (7), the
number of the coefficients ¢_, ,_, which are linearly independent of one another is just
n(t—1)—=N;. This, then, is precisely the number of the conditions which we impose
on the arbitrary constants § when we equate to 0 the 7 (1—1) coefficients c_,,_, in the
identity (66). The subsistence of the identity (65) therefore imposes n (¢—1) —N;
conditions on the constants J, these being the conditions which are necessary and
sufficient in order that a rational function representable in either of the forms (48)
or (59) should at the same time be representable in the other form also, it being
understood that the functions ¢% (z,u) which appear in the summation in (59) have
the special forms given by formula (64). 4 -

Referring to formule (45) and (68) we obtain for the total number of the constants
d here in question the expression

. r: Y r—’i K 1 (3
Slo=m—2 2 1413 3 <,u.s()-—1+ _(,T)> A (48]
K Kk §=1 Kk s=1 Vg
since o,@ = —7,®¥. Subtracting n (¢—1)—N; from this expression, we obtain
Ty . T 1
N;i4n—2 2 799+43 = <,us<")--1 + —(K-)> W00 0 .. (78)
Kk §=1 k s=1 Vg )

for the number of the constants § which remain arbitrary after the forms (48) and
(59) have been identified. For the moment we shall indicate the expression (78) by
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the letter s, In the case where s = 0 the constants § must all have the value 0. In
this case, then, on referring to the representation given in (59), we see that the
general rational function H (2, %) built on the basis (+) must reduce to the polynomial
P(z,u), and on referring also to the identity (65), we furthermore see that the
polynomial P (z,4) must be 0 identically since its coefficients are linear in terms of
the constants J,”). Where § = 0 then the only rational function built on the basis
(7) is the constant 0.

Where s is >0 we can select among the constants § a set of s arbitrary constants
81y +vey 05, In terms of which we can express all the other constants J linearly. The
representation of the general rational function of (z u) built on the basis (+) will be
obtained in the form (59) on replacing in the functions ¢ (z, %) each of the constants
8 by its linear expression in terms of the arbitrary constants d,, ..., d;, and on doing
the same for each of the constants & which presents itself in the coefficients of
P(z,u). The general rational function built on the basis () can then be represented

in the form :
U+ & . . . .. (79)

where Uy, ..., Uy are specific rational functions of (z, u).
That the functions Uy, ..., Us here in question are linearly independent of one another
we can readily show, For suppose, if possible, that these functions are connected by

a linear relation
AU+ +dUg=0. . . . . . . . . . (80)

We have seen that the constants § must all be equal to 0 if the function represented
by the forms (48) and (59) is to be 0 identically. Now the form (79) is obtained from
the form (59) on expressing each of the remaining constants ¢ in terms of the s
constants d,, ..., &, and the left-hand side of (80) is thereafter obtained from the form
(79) by giving to the constants d,,...,d the values d,, ..., ds, respectively. The
left-hand side of (80) is then obtained from the form (59) on attributing to the

constants & in this form certain values, including the values d,, ..., ds for the
constants 4, ..., &, respectively. The resulting function, however, is identically 0,
and consequently d,, ..., ds must all be 0. The functions vy, ..., Us, then, are not

connected by a linear relation involving multipliers which are different from 0. The
general rational function built on the basis (+) then involves effectively s arbitrary
constants as we see from its representation in the form (79). Employing the
notation N, to designate the number of the arbitrary constants involved in the
expression of the general rational function built on the basis (), we have from (78)

N, =N;4+n—-2 2 041> = <,u,(")-—1+ -—1(—,‘—)> v O . . .. (81)
Vs

kK §=1 k §=1

/

In deriving this formula the sole limitation on the basis (v) was that all of its
numbers corresponding to finite values of the variable z were zero or negative.
3 B2
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Dropping this restriction, we shall now suppose () to be any basis whatever. The
complementary basis, as before, we indicate by (7). The most general rational
functions built on these bases we shall designate by H (z %) and H (2, %) respectively.
On properly choosing a definite polynomial ¢ (z) it is readily seen that H (z, u)/g(z),
and ¢ (z) H (z,u) are the most general rational functions built on bases () and (7)
which are complementary, the former basis at the same time offering no positive
orders of coincidence for finite values of the variable z.  We therefore have for the
bases (¢) and (%) the formula
vsl(“)> n

N;=N;+n—= 2 90413 = <,us(")-—-

K g=1 kK §=1

Here, however, we evidently have N, = N,, N; = N;, and

5 5 (0= 3 5 nn
Kk s=1 K s=1
so that we immediately verify the formula (81) for the more general complementary

bases () and () here in question.
From (57) and (58) we derive

Tk 1
53 913 S 5 F 0,0 =904 S S < 1+v(")> WO L (82)
k §=1 k s=1 K §=1 s

Combining this with (81) we obtain

N, +43 zlm © = N+l zl-m @ ... (83)
This is the Complementary Theorem. The complementary theorem then states that
the number of arbitrary constants involved in the expression of the general function
built on a basis (7) plus half the sum of all the orders of coincidence required by the
basis is equal to the like number constructed with reference to the complementary
basis (7), that is, with reference to the basis whose numbers are connected with those
of the basis () by the relations (57) and (58).
The formula (83) continues to hold good when we replace (57) and (58) by the
somewhat more general relations

= 1
70 4 70 =W —1+W; s=1,..,7 . . . . . . (84)
8
and
- 1
7P g () = ms(“)-|—1+—m; s=1,.0,7%, . . . . . . (85)
VS
where m,*, ..., m, ® represent the actual orders of coincidence of an arbitrarily chosen

rational function R (z,u) with the branches of the several cycles corresponding to the
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value z = a, To see this it is only necessary to remember that the aggregate sum of
all the orders of coincidence of any rational function is equal to 0 and to note that
the general rational function built on the basis (#) defined with reference to the
basis (+) by the relations (84) and (85) is obtained on multiplying by R (z, u)[f. (2, »),
the general rational function built on the basis originally defined as complementary
to the basis (7).

While the complementary theorem has here been deduced on the hypothesis that
the fundamental equation is an integral algebraic equation, it is easy to verify that
the generalized theorem holds also when the fundamental equation is not integral.
For more detail in connection with the theorem, and for some of its consequences, the
reader is referred to Chapter XII. and the following chapters of the book already
cited. In the present paper it has been the object of the writer to present a more
simple and elegant treatment of the theory leading up to the complementary theorem.
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